SEWA Smart Grid Automation Solution

Smart-grid Overview

Smart metering and smart grids can only function with a powerful sensor and secured communications platform. It must be able to transport all important energy data - in real-time, IP -based, securely encrypted, as broadband and more.

These requirements are met by The low power Voltage and current sensors as per IEC 60044-7 and IEC 60044-8 uses the IP based tele control Scada and or electricity grid for data transmission ,thus provides an optimal end to end solutions for energy supply companies. LP VT and LP CT technology can close the existing gaps in the Smart grid sensing area for the medium- and low-voltage grids as well as between energy suppliers, their customers and the technical systems. Here the technology can be used with other proven standards from the telecommunications industry including broadband, the TCP/IP protocol and the Ethernet. In addition, utilities can also ensure encrypted data transmission, data protection and data security.

ZELISKO SENSORS CT CABLE COMPARTMENT OF SCHNEIDER RE2c (11kV - RMU).

Pilot POC Stage

To achieve the required improvements SEWA turned to ZELISKO having already seen the improvement to the quality of ZELISKO Sensors had achived from world class companies such as Siemens and Schneider.

GoldenSands being a local partner to Zelisko in Middle-East region has partnerd with SEWA to deploy a pilot POC program with Zelisko Sensors installed into an existing Schneider-RE2c RMU (11-6.6/0.4kv) Substation located at American University of Sharjah inorder to address major issues like Transformer losses, Metering, Earth-Fault Indication, and Demand Calculation at M.V and L.V-Panels. After the success of this POC project, SEWA will move to a full implementation stage.

Major Components Involved

3 XU-SENSOR 24 /√3kV 3,25/√3V

3 XI-SENSOR 300A // 225mV

RTU

Grid Intelligent

GRID CONTROL

Transmission of the instantaneous values of current and voltage

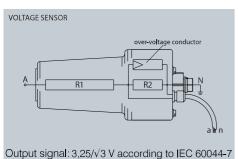
PROTECTION DEVICE

RTU communication to grid control center

Case Study

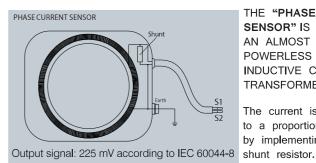
ZELISKO Voltage Sensor (Schneider RMU)

7	ELTSKO	LOW POWER VOLTAGE TRANSFORMER		
4	LLIONU	SMV8-UW10018	8/N: VASAN -006	
12/28/75kV		11000/√3	A-N	1,2kg
11000/√3//3,25/√3 burden: 200kOhm±1%, 350pF		CI.0.5	a-n	1,7-3,7m
		50/60Hz	-25°C to +40°C	
	1,9xUN, 8h	E		
IEC60044-7		use only recommended plugs		



ZELISKO Current Sensor (Schneider RMU)

TELTOVO	LOW POWER CURRENT TRANSFORMER		
TELIONU	SMCS-JW1001	S/N:	1710533 - 06
0,72/3/ - kV	200A	P1-P2	0,7kg
200A / 0.225V	CI.0.5/5P10	S1-S2	burden > = 20k0hm
50Hz	E	-2	5°C to +55°C
IEC60044-8	25kA, 1s		


Function and error limits

THE FUNCTION PRINCIPAL OF THE "VOLTAGE SENSOR" IS BASED ON A RESISTIVE DIVIDER

It consists of 2 resistive elements, which divide the input signal in order to revieve a normed output value. The surge protector provides protection of sequentially connected measuring devices.

Function and error limits

THE "PHASE CURRENT SENSOR" IS BASED ON AN ALMOST **POWERLESS** INDUCTIVE CURRENT TRANSFORMER.

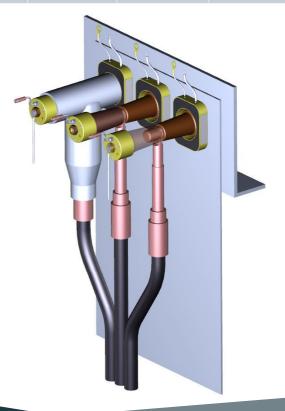
The current is converted to a proportional voltage by implementing a

Accuracy limits of voltage sensors for measurement purposes				
Class		Voltage error (%)	Phase displacement (min)	
Accuracy class IEC 60044-7	0,5	0,5	20	
	1	1	40	
	3	3	limit values are not specified	

Accuracy limits of voltage sensors for protection purposes				
Class		Voltage error (%)	Phase displacement (min)	
Accuracy class IEC 60044-7	3P	3	120	
	6P	6	240	

Accuracy limits of phase current sensors for measurement purposes Class Current error (%) Phase displacement (min) 5% Ip 20% I_p 50% I, 100% I_p 120% I_p 5% I_p 20% I 100% l_p 120% l_p 0,5 class IEC 60044-8 180 60 limit values are not specified

Accuracy limits of phase current sensors for protection purposes				
Class		Current error (%) 100% I _p	Phase displacement (min)	Composite error at rated accuracy-limits
Accuracy class IEC 60044-8	5P	1	60	5
	10P	3	-	10


Configuration Option - Retro-fit Solution

The compact sensors of Zelisko enable an easy and quick retrofit without major changes in the switch-gear and in the network infrastructure.

The equipment of the T-connectors with the sensors depends on the type of application, the size of the cable connection compartment in the switchgear, and the local situation (i.e. original equipment or retrofit). Zelisko sensors can be seamlessly retrofit with leading RMU brands such as Schneider, Siemens, LUCY

Case Study

Installation Sequence at M V Panel

- 1. Installation of Zelisko CT/VT Sensor inside RMU.
- 2. Installation of RTU Panel with Grid Intelligence Monitoring Relay.
- Connecting Sensor Cable to Relay and further establish standard Modbus communication between Relay and RTU.
- 4. Establish RTU Communication to SCADA over IEC61850.
- SCADA screens showing live data for various parameters as follows:
 a.Measured True RMS value for alternating voltage,
 alternating current and power frequency.
 - b.Active power (P), Reactive power (Q),Apparent power (S),
 Power factor (cos O), phase angle, energy and other
 relevant values.
 - c.Peak-Demand and Calculated Transformer losses.
 - d.Fault Indication for Over-Voltage, Under-Voltage,
 - Over-Current, Directional Earth-fault, and Phase-fault.

Installation Sequence at L V Panel

- 1. Installation of Zelisko LVCT Sensorith ratio (2500:5A).
- Installation of Eltako MID-Approved Energy Meter 3x5A available with Display and adjustable CT-Ratio.
- 3. Establish Meter communication to SCADA via RTU.
- 4. Scada Screen showing live data Active-Energy (MWh)
 - & Momentary Power.(kWh)

